Skip to main content

Garbage collection in Java

I am starting a series of posts on the Java garbage collector and various garbage collection algorithms. Over the 10 days or so, we will examine the Java garbage collector and garbage collection algorithms. Let's begin with a brief introduction.

An executing program occupies memory. Memory is taken as new objects are created. This memory should be returned when these objects are no longer needed. If it is not, then the computer will soon run out of resources, forcing the program to a halt. In C++ we have to explicitly return an object's memory back to the system when the object is destroyed. This is also the source for many bugs in C++. Buggy code that does not return memory can very soon exhaust system resources. To eliminate such errors, and make your program more robust, Java has adopted the philosophy of automatic memory reclamation. The JVM determines when an object is no longer needed (Eg: after the variable goes out of scope), and automatically reclaims memory occupied by that object. Objects no longer needed are known as 'garbage', because; well that is what we call things we no longer need, right? Hence reclamation of un-needed heap (Java objects are always created on the heap) memory is known as garbage collection in Java.

The JVM runs the garbage collector as a background thread, which constantly monitors the heap. The exact mechanism of reclaiming memory is JVM specific. The Java Language Specification (JLS) does not mandate any particular mechanism for garbage collection, hence it is implemented by the JVM creator.

There are several well known garbage collection algorithms that are implemented by modern JVM's. Each has pros and cons in terms of memory usage and performance. Some of these algorithms are:

  • Reference counting algorithms

  • Tracing algorithms

  • Compacting algorithms

  • Copying algorithms

  • Generational algorithms

  • Adaptive algorithms

In the next post we will discuss "Reference counting algorithms"

Discuss this post in the learning forum.

Commercial Links

Comments

Popular posts from this blog

My HSQLDB schema inspection story

This is a simple story of my need to inspect the schema of an HSQLDB database for a participar FOREIGN KEY, and the interesting things I had to do to actually inspect it. I am using an HSQLDB 1.8 database in one of my web applications. The application has been developed using the Play framework , which by default uses JPA and Hibernate . A few days back, I wanted to inspect the schema which Hibernate had created for one of my model objects. I started the HSQLDB database on my local machine, and then started the database manager with the following command java -cp ./hsqldb-1.8.0.7.jar org.hsqldb.util.DatabaseManagerSwing When I tried the view the schema of my table, it showed me the columns and column types on that table, but it did not show me columns were FOREIGN KEYs. Image 1: Table schema as shown by HSQLDB's database manager I decided to search on StackOverflow and find out how I could view the full schema of the table in question. I got a few hints, and they all pointed to

Fuctional Programming Principles in Scala - Getting Started

Sometime back I registered for the Functional Programming Principles in Scala , on Coursera. I have been meaning to learn Scala from a while, but have been putting it on the back burner because of other commitments. But  when I saw this course being offered by Martin Odersky, on Coursera , I just had to enroll in it. This course is a 7 week course. I will blog my learning experience and notes here for the next seven weeks (well actually six, since the course started on Sept 18th). The first step was to install the required tools: JDK - Since this is my work machine, I already have a couple of JDK's installed SBT - SBT is the Scala Build Tool. Even though I have not looked into it in detail, it seems like a replacement for Maven. I am sure we will use it for several things, however upto now I only know about two uses for it - to submit assignments (which must be a feature added by the course team), and to start the Scala console. Installed sbt from here , and added the path

Inheritance vs. composition depending on how much is same and how much differs

I am reading the excellent Django book right now. In the 4th chapter on Django templates , there is an example of includes and inheritance in Django templates. Without going into details about Django templates, the include is very similar to composition where we can include the text of another template for evaluation. Inheritance in Django templates works in a way similar to object inheritance. Django templates can specify certain blocks which can be redefined in subtemplates. The subtemplates use the rest of the parent template as is. Now we have all learned that inheritance is used when we have a is-a relationship between classes, and composition is used when we have a contains-a relationship. This is absolutely right, but while reading about Django templates, I just realized another pattern in these relationships. This is really simple and perhaps many of you may have already have had this insight... We use inheritance when we want to allow reuse of the bulk of one object in other