Skip to main content

Groovy numbers

I was very pleasantly surprised when I learned how to work with numbers in Groovy. The first difference between Groovy and Java (while dealing with numbers) is that in Groovy numbers are always objects. There are no primitive numbers like in Java. This may have the disadvantage of increased memory usage, but it also has the advantage that working with large numbers is much easier.

If you have tried doing high precision calculations or working with really large numbers in Java, then you know how difficult it is to work with BigDecimal and BigInteger to perform calculations. We have to call methods instead of using operators. Let's see this with a small example. If I want to print the value of Long.MAX_VALUE * 2, I have to use BigInteger and then invoke it's multiply method as shown in the example below:

System.out.println(Long.MAX_VALUE * 2); //Incorrect: prints -2
//The right way to work with large numbers in Java
BigInteger bi1 = new BigInteger("9223372036854775807");
BigInteger bi2 = new BigInteger("2");
BigInteger bi3 = bi1.multiply(bi2);
System.out.println(bi3);

Output of this program is:

-2
18446744073709551614


See how cumbersome it is to do even simple operations with integers larger than 263-1. However in Groovy, multiplying Long.MAX_VALUE with 2 would have automatically resulted in a BigInteger. Floating point numbers in Groovy are always BigDecimals, and as a rule, when we do arithmetic operations in Groovy, the result is always what we expect it to be.

This small snippet of Groovy code is self explanatory.


//It is very natural to do high precision calculations in Groovy because
//in Groovy numbers can be directly represented with BigDecimal and BigInteger
//and we can use regular arithmatic operators with them

//Numbers in Groovy are first class objects
def i = 5
println '5 is of type ' + i.getClass().getName()

def d = 5.4
println '5.4 is of type ' + d.getClass().getName()

//It is possible to explicitly create Long, Float, Double, and G???
def l = 8999000000000L
println '8999000000000L is of type ' + l.getClass().getName()

def f = 1.2F
println '1.2F is of type ' + f.getClass().getName()

def doubleObj = 1.2D
println '1.2D is of type ' + doubleObj.class.getName()

def g = 3G
def g1 = 3.5G
println '3G is of type ' + g.getClass().getName()
println '3.5G is of type ' + g1.getClass().getName()

//type conversions in arithmatic operations
//Mostly the result is what you would expect
println 'Adding Integers results in a : ' + (3 + 3).class.getName()
println 'Multiplying Integers results in a : ' + (3*3).class.getName()
println 'subtraction between Integers results in a : ' + (3-8).class.getName()
println 'Division of an Integer with an Integer results in a : ' + (3/3).class.getName()

//Integer division can be forced with the intdiv() method
def fi = 1.intdiv(2)
println 'fi is of type: ' + fi.class.getName() + ' and it\'s value is ' + fi

//Some numbers also have methods which can be used instead of for loops
//by accepting a closure
def n = 5
n.times { print """${it} """} //notice the use of GStrings

//other methods on numbers include upto, downto, and step
//we also need a more advanced example on numbers to explore all the other
//methods present in various number classes


Output of this program is:

5 is of type java.lang.Integer
5.4 is of type java.math.BigDecimal
8999000000000L is of type java.lang.Long
1.2F is of type java.lang.Float
1.2D is of type java.lang.Double
3G is of type java.math.BigInteger
3.5G is of type java.math.BigDecimal
Adding Integers results in a : java.lang.Integer
Multiplying Integers results in a : java.lang.Integer
subtraction between Integers results in a : java.lang.Integer
Division of an Integer with an Integer results in a : java.math.BigDecimal
fi is of type: java.lang.Integer and it's value is 0
0 1 2 3 4

Comments

Popular posts from this blog

Commenting your code

Comments are an integral part of any program, even though they do not contribute to the logic. Appropriate comments add to the maintainability of a software. I have heard developers complain about not remembering the logic of some code they wrote a few months back. Can you imagine how difficult it can be to understand programs written by others, when we sometimes find it hard to understand our own code. It is a nightmare to maintain programs that are not appropriately commented. Java classes should contain comments at various levels. There are two types of comments; implementation comments and documentation comments. Implementation comments usually explain design desicisions, or a particularly intricate peice of code. If you find the need to make a lot of implementation comments, then it may signal overly complex code. Documentation comments usually describe the API of a program, they are meant for developers who are going to use your classes. All classes, methods and variables ...

Inheritance vs. composition depending on how much is same and how much differs

I am reading the excellent Django book right now. In the 4th chapter on Django templates , there is an example of includes and inheritance in Django templates. Without going into details about Django templates, the include is very similar to composition where we can include the text of another template for evaluation. Inheritance in Django templates works in a way similar to object inheritance. Django templates can specify certain blocks which can be redefined in subtemplates. The subtemplates use the rest of the parent template as is. Now we have all learned that inheritance is used when we have a is-a relationship between classes, and composition is used when we have a contains-a relationship. This is absolutely right, but while reading about Django templates, I just realized another pattern in these relationships. This is really simple and perhaps many of you may have already have had this insight... We use inheritance when we want to allow reuse of the bulk of one object in other ...

Planning a User Guide - Part 3/5 - Co-ordinate the Team

Photo by  Helloquence  on  Unsplash This is the third post in a series of five posts on how to plan a user guide. In the first post , I wrote about how to conduct an audience analysis and the second post discussed how to define the overall scope of the manual. Once the overall scope of the user guide is defined, the next step is to coordinate the team that will work on creating the manual. A typical team will consist of the following roles. Many of these roles will be fulfilled by freelancers since they are one-off or intermittent work engagements. At the end of the article, I have provided a list of websites where you can find good freelancers. Creative Artist You'll need to work with a creative artist to design the cover page and any other images for the user guide. Most small to mid-sized companies don't have a dedicated creative artist on their rolls. But that's not a problem. There are several freelancing websites where you can work with great creative ...