Skip to main content

Loading classes

Now that we have understood how the Classloader locates classes, what exactly does loading a class mean? What happens when a class is loaded?

Loading refers to the process of finding the binary form of a class or interface type with a particular name, perhaps by computing it on the fly, but more typically by retrieving a binary representation previously computed from source code by a compiler, and constructing, from that binary form, a Class object to represent the class or interface.

The binary format of a class or interface is normally the class file format described in The Java Virtual Machine Specification, but other formats are possible, provided they meet the specified requirements. The method defineClass of class ClassLoader may be used to construct Class objects from binary representations in the class file format.

The loading process is implemented by the class ClassLoader and its subclasses. Different subclasses of ClassLoader may implement different loading policies. In particular, a class loader may cache binary representations of classes and interfaces, prefetch them based on expected usage, or load a group of related classes together. These activities may not be completely transparent to a running application if, for example, a newly compiled version of a class is not found because an older version is cached by a class loader. It is the responsibility of a class loader, however, to reflect loading errors only at points in the program they could have arisen without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the following subclasses of class LinkageError will be thrown at any point in the program that (directly or indirectly) uses the type:

  • ClassCircularityError: A class or interface could not be loaded because it would be its own superclass or superinterface.

  • ClassFormatError: The binary data that purports to specify a requested compiled class or interface is malformed.

  • NoClassDefFoundError: No definition for a requested class or interface could be found by the relevant class loader.


The above passage is an excerpt from The Java Language Specification.

What it means is, when the JVM needs a class, it is the responsibility of the ClassLoader to locate and loading it. The ClassLoader locates the class file as discussed earlier and creates a 'java.lang.Class' object that represents the class. So for example, when the String class is loaded, a java.lang.Class instance is created to represent the String class. Class instances are created for every class and NOT for every instance of the class. Even if we create 1000 String instances, only one instance of Class will be created to represent the String class. Think of the class Class as a blueprint of the class that was loaded. It contains the name of the class, it's superclasses, implemented interfaces, attributes, and methods.

When the JVM has to instantiate a Student object, it will first delegate the task of loading that object to the ClassLoader. The ClassLoader finds the file Student.class, reads it's contents and creates an object of type java.lang.Class, which represents the Student class. This object is handed over to the JVM, which uses it to create instances of type Student.

Till now we have seen that the ClassLoader locates a class by finding it in the local file system using the CLASSPATH environment variable. This is how classes are loaded most of the time, but it is not the only way. Classes can be loaded from the network over a TCP/IP socket (this is how classes are loaded in an Applet), by using a custom ClassLoader. Custom ClassLoaders can also be used for special checks, like the verification of digital signature of classes that are loaded. You can use, or write your own custom ClassLoader to load classes in an unconventional manner.

The ClassLoader  performs several checks on the class that is loaded. We will understand them in greater detail in the next post.



Note: This text was originally posted on my earlier blog at http://www.adaptivelearningonline.net

Comments

Popular posts from this blog

Running your own one person company

Recently there was a post on PuneTech on mom's re-entering the IT work force after a break. Two of the biggest concerns mentioned were : Coping with vast advances (changes) in the IT landscape Balancing work and family responsibilities Since I have been running a one person company for a good amount of time, I suggested that as an option. In this post I will discuss various aspects of running a one person company. Advantages: You have full control of your time. You can choose to spend as much or as little time as you would like. There is also a good chance that you will be able to decide when you want to spend that time. You get to work on something that you enjoy doing. Tremendous work satisfaction. You have the option of working from home. Disadvantages: It can take a little while for the work to get set, so you may not be able to see revenues for some time. It takes a huge amount of discipline to work without a boss, and without deadlines. You will not get the benefits (insuran

Some thoughts on redesigning education

Some time back I read a blog post on redesigning education. It asked some very good questions. Stuff which I had been thinking of myself. I left my thoughts on the blog, but I would also like to start a conversation around these ideas with those who read this blog as well. I would like to know what other people think of the issue of redesigning (college) education. I have often thought about how college education can be improved. To answer this question, we first have to ask a very basic question. What is the purpose of education? To me, we need education for 3 things: To learn more about the world around us To lead positive constructive lives To earn a good living / fulfill our ambitions I think education has to a large extent evolved to fulfill #3 (with a bias towards earning a comfortable living). The semester system, along with multiple choice tests, and grading, has made our education system into an assembly line. Students are pushed into the assembly line, given classes, admini

Testing Groovy domain classes

If you are trying to test Grails domain class constraints by putting your unit test cases in the 'test/unit' directory, then your tests will fail because the domain objects will not have the 'valdate' method. This can be resolved in two ways: Place the test cases inside test/integration (which will slow things down) Use the method 'mockForConstraintsTests(Trail)' to create mock method in your domain class and continue writing your test cases in 'test/unit' What follows is some example code around this finding. I am working on a Groovy on Grails project for a website to help programmers keep up and refresh their skills. I started with some domain classes and then moved on to write some unit tests. When we create a Grails project using grails create-app , it creates several directories, one of which is a directory called 'test' for holding unit tests. This directory contains two directories, 'unit', and 'integration' for uni