Skip to main content

The Open-Closed principle for software design

The Open-Closed principle states that the design of a software system should be open for extension, but individual classes should be closed for modification. This means that a software should be designed such that new functionality can be added by adding new classes, and by subclassing abstract classes that have already been defined. However once a class is implemented it should be closed for modifications.

Such a design can be achieved by using the "Program To An Interface" concept. This concept states that the client class must reference abstract classes instead of concrete classes. This way subclasses can be added to the system as new functionality is added, without breaking client code. Care must be taken so as not to instantiate concrete classes in the client code. The creation of concrete subclasses must be handled by object factories. The dependency inversion principle ensures proper implementation of the open-close principle.

To summarize: we must achieve extensibility in a software system by adding new classes (subclasses) and not by modifying existing classes.

Here is an example to better understand this principle.
Spec: We want to design a software which will play a selected tune on a selected musical instrument.
The system will have the following classes:
public class Tune {
}

public class Instrument {
public abstract void play(Tune tune);
}

public class Guitar extends Instrument {
public void play(Tune tune) {
//play the tune using a Guitar
}
}

public class Harmonium extends Instrument {
public void play(Tune tune) {
//play the tune using a Harmonium
}
}

The client code is the code which uses these objects and invokes the play method.
public class Jukebox {
public void playMusic() {
Tune tune = getUserSelectedTune();
Instrument instr = getUserSelectedInstrument();
instr.play(tune);
}
}

Notice that the client code (Jukebox) does not instantiate a particular instrument subclass. It simply gets the instrument (superclass) reference from a method that is responsible for creating a concrete instrument . If the specification changes and we wish to add more instruments in our system, all we have to do is create subclasses of Instrument, override the play method, and modify the method getUserSelectedInstrument(). The client code in Jukebox does not need to be changed. Incorporating the change in specification was easy and minimal code had to be touched because we used the open-closed principle.

Comments

Uvarani said…
Gives me a clear cut idea of OCP. Useful for my exam preparation. Thanks a lot.

Popular posts from this blog

Five Reasons Why Your Product Needs an Awesome User Guide

Photo Credit: Peter Merholz ( Creative Commons 2.0 SA License ) A user guide is essentially a book-length document containing instructions for installing, using or troubleshooting a hardware or software product. A user guide can be very brief - for example, only 10 or 20 pages or it can be a full-length book of 200 pages or more. -- prismnet.com As engineers, we give a lot of importance to product design, architecture, code quality, and UX. However, when it comes to the user manual, we often only manage to pay lip service. This is not good. A usable manual is as important as usable software because it is the first line of help for the user and the first line of customer service for the organization. Any organization that prides itself on great customer service must have an awesome user manual for the product. In the spirit of listicles - here are at least five reasons why you should have an awesome user manual! Enhance User Satisfaction In my fourteen years as a

Inheritance vs. composition depending on how much is same and how much differs

I am reading the excellent Django book right now. In the 4th chapter on Django templates , there is an example of includes and inheritance in Django templates. Without going into details about Django templates, the include is very similar to composition where we can include the text of another template for evaluation. Inheritance in Django templates works in a way similar to object inheritance. Django templates can specify certain blocks which can be redefined in subtemplates. The subtemplates use the rest of the parent template as is. Now we have all learned that inheritance is used when we have a is-a relationship between classes, and composition is used when we have a contains-a relationship. This is absolutely right, but while reading about Django templates, I just realized another pattern in these relationships. This is really simple and perhaps many of you may have already have had this insight... We use inheritance when we want to allow reuse of the bulk of one object in other

Planning a User Guide - Part 3/5 - Co-ordinate the Team

Photo by  Helloquence  on  Unsplash This is the third post in a series of five posts on how to plan a user guide. In the first post , I wrote about how to conduct an audience analysis and the second post discussed how to define the overall scope of the manual. Once the overall scope of the user guide is defined, the next step is to coordinate the team that will work on creating the manual. A typical team will consist of the following roles. Many of these roles will be fulfilled by freelancers since they are one-off or intermittent work engagements. At the end of the article, I have provided a list of websites where you can find good freelancers. Creative Artist You'll need to work with a creative artist to design the cover page and any other images for the user guide. Most small to mid-sized companies don't have a dedicated creative artist on their rolls. But that's not a problem. There are several freelancing websites where you can work with great creative ar